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Abstract
The n integrals in involution for the motion on the n-dimensional ellipsoid
under the influence of a harmonic force are explicitly found. The classical
separation of variables is given by the inverse momentum map. In the quantum
case the Schrödinger equation separates into one-dimensional equations that
coincide with those obtained from the classical separation of variables. We
show that there is a more general orthogonal parametrization à la Jacobi that
depends on two arbitrary real parameters. Also, if there is a certain relation
between the spring constants and the ellipsoid semiaxes, the motion under the
influence of such a harmonic potential is equivalent to the free motion on the
ellipsoid.

PACS number: 03.65.−w

1. Introduction

In this paper we are concerned with the motion on a n-dimensional ellipsoid under the influence
of a harmonic potential. The problem was first posed by Jacobi (1884) in the nineteenth
century in the context of explicitly solvable by quadratures differential equations most of them
originating in completely integrable Hamiltonian systems. In the last decades the problem
was considered mostly by mathematicians obtaining new results including a description of
integrals in involution and connection with hyperelliptic curves of genus n (see Moser (1980a,
1980b), Uhlenbeck (1982) and Mumford (1984)). However, in this approach no explicit
separation of variables was found. Quite recently we have obtained a new form for the n prime
integrals in involution for the free motion on the ellipsoid in the Jacobi parametrization (Diţă
1999), a form which is very convenient for proving the separation of variables and solving the
Hamilton–Jacobi equation.

The purpose of this paper is to extend our previous results in two directions: to find
a generalization of the Jacobi orthogonal parametrization and the most general form of the
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harmonic potential for which the motion is still completely integrable. As unexpected results
we obtained a new orthogonal parametrization that depends on two arbitrary real parameters
generalizing the Jacobi one, and if the spring constants k1 and k2 along two axes of symmetry
satisfy the relation a1k1 = a2k2, where a1 and a2 are the squares of the corresponding
semiaxes, then the motion under the influence of such a harmonic potential is the free motion
on the ellipsoid. In our approach the separation of variables is realized by the inverse of the
momentum map that provides an explicit factorization into Liouville tori. In the standard
approach the separation of variables is a rather difficult problem, (see e.g. Kalnis et al (1994))
where the separated variables are defined as zeros of the off diagonal elements of the associated
Lax matrix.

The paper is organized as follows: in section 2 we define a two-dimensional family
of Jacobi elliptic coordinates and in section 3 we prove explicitly their orthogonality. The
integrals in involution for the free motion on the ellipsoid are found in section 4 and we
show that they are a particular case of a more general form. The most general form of the
harmonic potential for which the motion is still integrable is given in section 5 and the classical
separation of variables is obtained in section 6. The separation of the Schrödinger equation is
shown in section 7 and the paper ends with a conclusion. In the appendix are collected a few
known properties of the Vandermonde determinant which are used in the paper.

2. Generalized Jacobi’s coordinates on the n-dimensional ellipsoid

Usually the n-dimensional ellipsoid is viewed as a surface immersed in a (n + 1)-dimensional
Euclidean space, defined by the equation

x2
1

a1
+

x2
2

a2
+ · · · +

x2
n+1

an+1
= 1

where ai, i = 1, . . . , n + 1 are positive numbers, ai ∈ R+, and we suppose that they are
ordered such that a1 > · · · > an+1 > 0. We describe the n-dimensional ellipsoid by intrinsic
coordinates and here we slightly generalize Jacobi’s approach by defining the generalized
elliptic coordinates as the solutions of the equation

n+1∑
i=1

bix
2
i

ai(bi − λ)
= 1 (1)

with bi ∈ R∗, bi �= bj , for i �= j, i, j = 1, . . . , n + 1. We rewrite (1) in the form

1 +
n+1∑
i=1

bix
2
i

ai(λ − bi)
= λQ(λ)

P (λ)
(2)

where P(λ) and Q(λ) are the monic polynomials

Q(λ) =
n∏

i=1

(λ − ui) P (λ) =
n+1∏
i=1

(λ − bi).

Here ui, i = 1, . . . , n are the Jacobi coordinates and the factor λ comes from the fact that
λ = 0 is a solution of (1) when the coordinates xi lie on the ellipsoid.

Calculating the residues on both left- and right-hand sides of equation (2) one gets

x2
i = ai

Q(bi)

P ′(bi)
i = 1, . . . , n + 1. (3)



Motion on the n-dimensional ellipsoid under the influence of a harmonic force revisited 10161

If bi = ai, i = 1, . . . , n + 1, equation (3) gives the usual Jacobi parametrization of the n-
dimensional ellipsoid. For ai = r2, i = 1, . . . , n + 1, the relation (3) gives the orthogonal
parametrization of the n-dimensional sphere of radius r and in this case (1) has the form

n+1∑
i=1

x2
i

λ − bi

= 0.

Our approach is sufficiently general and gives the parametrization of any quadric defined by
ai ∈ R∗.

Parametrization (3) depends on 2n+ 2 parameters, half of them bi ∈ R∗, i = 1, . . . , n+ 1,
being arbitrary real numbers and for this reason the corresponding Jacobi coordinates ui could
not be orthogonal. However, there does exist an orthogonal parametrization, different from
the usual one, which depends on n + 3 parameters. In other words there is more than one
orthogonal system of coordinates of Jacobi type and this situation could be interpreted as a
hidden symmetry of the problem. We found that this symmetry is two-dimensional and the
independent parameters in equation (3) leading to orthogonal coordinates may be chosen as
ai, i = 1, . . . , n+1, b1 and b2, the last two being arbitrary non-zero real numbers with b1 �= b2.

To find the new parametrization we deduce from (3)

ẋi

xi

= 1

2

n∑
l=1

u̇l

ul − bi

where a dot means the derivative with respect to time, and
n+1∑
i=1

ẋ2
i = 1

4

n∑
l,m=1

u̇l u̇m

n+1∑
i=1

x2
i

(ul − bi)(um − bi)
.

Taking into account relation (3), a careful inspection shows that the function

clm =
n+1∑
i=1

x2
i

(ul − bi)(um − bi)
l �= m

is a symmetric polynomial with respect to ui in its n − 2 variables, having degree equal to
n − 2 and n − 1 independent coefficients. An important property is that these coefficients do
not depend on l and m, i.e. for all l �= m, clm defines a single function; instead of n(n − 1)/2
different polynomials we have only one. Imposing now the condition clm ≡ 0 for l �= m we
obtain n − 1 equations which can be solved with respect to bi . So the number of parameters
of the new parametrization is 2n + 2 − (n − 1) = n + 3.

To see what happens let us consider the case n = 2; in this case the condition c12 ≡ 0 is
equivalent to the relation

b3 = a1b2 − a2b1 + a3(b1 − b2)

a1 − a2
.

By iteration we obtain for n = 4 the additional constraint

b4 = a1b2 − a2b1 + a4(b1 − b2)

a1 − a2
.

Thus we suppose that the general case is given by

bn = a1b2 − a2b1 + an(b1 − b2)

a1 − a2
n = 3, . . . , n + 1.

We introduce now a uniform notation by defining two new parameters

α = a1b2 − a2b1

a1 − a2
and β = b1 − b2

a1 − a2
.
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Solving with respect to b1 and b2 we find

bi = α + βai i = 1, . . . , n + 1. (4)

In the following section we prove that the two-dimensional family of Jacobi coordinates whose
parametrization is given by relation (3) with bi as in (4) is orthogonal for all real values of
α ∈ R and β ∈ R∗.

3. Orthogonality property

For proving the orthogonality of the new coordinates we write equation (2) in another form

n+1∑
i=1

x2
i

ai(λ − bi)
= Q(λ)

P (λ)
.

In the last relation we substitute bi = α +βai, i = 1, . . . , n+1, and after minor transformation
we get

n+1∑
i=1

x2
i

α + βai − λ
= 1

β

(
1 − (λ − α)Q(λ)

P (λ)

)
. (5)

For l �= m we have

clm

n+1∑
i=1

x2
i

(ul − bi)(um − bi)
= 1

ul − um

(
n+1∑
i=1

x2
i

um − bi

−
n+1∑
i=1

x2
i

ul − bi

)
.

Substituting bi = a + βai in the last relation and using (5) and the property Q(ui) = 0, i =
1, . . . , n, we find that clm = 0 for l �= m, i.e. the new coordinates are orthogonal, and our
assumption expressed by the relation (4) is true.

For l = m we have

cll =
n+1∑
i=1

x2
i

(ul − bi)2
= − d

dz

n+1∑
i=1

x2
i

(z − bi)

∣∣∣∣∣
z=ul

(6)

and we need a calculation of the last sum. It can be obtained by differentiating (5) with respect
to λ. We use this result to write the Lagrangian in the form

L = 1

2

n+1∑
i=1

ẋ2
i =

n∑
j=1

gjj u̇
2
j (7)

where gjj = − 1
4β

(uj −α)Q′(uj )

P (uj )
are the components of the diagonal metric tensor and

Q′(uj ) = dQ(x)/dx|x=uj
. For α = 0 and β = 1 one recovers the usual result (Moser

1980b).
Following the standard procedure we find the Hamiltonian of the free motion on the

n-dimensional ellipsoid

H =
n∑

j=1

pjuj − L = −2β

n∑
j=1

giip2
i (8)

where gii = P(ui)/(ui − a)Q′(ui) and uj , pj are canonical coordinates.
Unlike the classical result we have obtained that the Hamiltonian of the geodesic motion is

not uniquely defined, it depends continuously and non-trivially on two arbitrary real parameters
α and β. By changing these parameters one changes the classical state of the system if the
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latter one is defined as a point in the phase space but the form of the energy does not change.
This property could be interpreted as a gauge symmetry of the classical Jacobi problem. Under
the transformations

x2
i → ai

Q(bi)

P ′(bi)
bi → α + βai α ∈ R β ∈ R∗

the Lagrangian L and the Hamiltonian H remain invariant, and ipso facto the equations of
motion. Since with given initial conditions the physical motion is unique the only freedom
we have in proving the uniqueness is the reparametrization of time. Generally speaking this
fact gives rise to a new problem, namely that of finding all the metrics which lead to the same
physical motion; in other words how large the hidden symmetry is, or how many geometries
describe the same physical process. A solution to this problem could be of interest in the study
of more complicated models arising in classical and quantized field theories.

4. Integrals in involution

We introduce now n integrals in involution that are linearly independent. With this aim we
define the symmetric functions of the polynomials Q′(uj ) ≡ Qj(uj )

Qj (uj ) =
n−1∑
k=0

uk
jS

(j)

n−k−1 (9)

where S
(j)

k = (−1)kσk(u1, . . . , uj−1, uj+1, . . . , un) and σk is the symmetric polynomial
of degree k. By construction the coordinate uj does not enter the symmetric sum
S

(j)

k , k = 0, 1, . . . , n − 1. The following functions:

Hk =
n∑

l=1

S
(l)
k−1g

llp2
l k = 1, . . . , n (10)

with H1 = −H up to a numerical factor are n integrals in involution for the geodesic motion
on the ellipsoid.

The integrals of motion Hk, k = 1, . . . , n in the above form were found by us in Diţă
(1999); for another approach see e.g. Moser (1980a).

Taking into account the explicit form of the inverse of the metrical tensor gii an inspection
of (10) shows that for each degree of freedom the contribution to the Hamiltonian Hk is given by
a product of two factors. The first one, the ‘kinematical’ factor, depends on a special structure,
in our case the Vandermonde structure defined by the ratio f1(u1, . . . , un) = S

(i)
k−1

/
Q′(ui),

and the second one, the kinetic energy, f2(ui, pi) = p2
i P (ui)/(ui − α) depends on the

‘physics’, in our case the geometry of the body. The important issue is the factorization
f1(u1, . . . , un) · f2(ui, pi) where f1 has no momentum dependence and f2 depends only on
a pair of canonical variables and nothing else.

Let g(p, u) = H(p, u) be an arbitrary function depending on the canonical variables p
and u which is invertible with respect to the momentum p. As we will see later the invertibility
condition is necessary for the separation of variables in the Hamilton–Jacobi equation. In
particular we may suppose that H(p, u) is a one-dimensional Hamiltonian. For each n ∈ N
we define an n-dimensional integrable model by giving its n integrals in involution

Hk(p, u) =
n∑

i=1

S
(i)
k−1

Q′(ui)
g(pi, ui) k = 1, . . . , n. (11)
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We will prove the involution property in the more general case (11). We have

{Hk, Hl} =
n∑

j=1

(
∂Hk

∂uj

∂Hl

∂pj

− ∂Hk

∂pj

∂Hl

∂uj

)

=
n∑

j=1

∂g(pj , uj )

∂pj

(
S

(j)

l−1

Q′(uj )

∂Hk

∂uj

− S
(j)

k−1

Q′(uj )

∂Hl

∂uj

)

=
n∑

j=1

n∑
i=1

1

Q′(uj )

∂g(pj , uj )

∂pj

(
S

(j)

l−1

∂

∂uj

(
g(pi, ui)

S
(i)
k−1

Q′(ui)

)

− S
(j)

k−1

∂

∂uj

(
g(pi, ui)

S
(i)
l−1

Q′(ui)

))

=
n∑

j=1

n∑
i=1

1

Q′(uj )

∂g(pj , uj )

∂pj

∂

∂uj

(
g(pi, ui)

(
S

(i)
k−1S

(j)

l−1 − S
(j)

k−1S
(i)
l−1

)
Q′(ui)

)
.

The last step was possible because the symmetric functions S
(j)

k and S
(j)

l do not depend on
uj . Looking at the last expression it is easily seen that the partial derivative with respect to uj

vanishes for i = j . For i �= j we have to show that

∂

∂uj

S
(i)
k−1S

(j)

l−1 − S
(j)

k−1S
(i)
l−1

ui − uj

= 0

but this is a consequence of the following identities:

∂

∂uj

S
(i)
k−1 = −S

(i,j)

k−2 and S
(i)
k−1 − S

(j)

k−1 = (ui − uj )S
(i,j)

k−2

where the upper index (i, j) means that the corresponding expression does not depend on both
ui and uj . In this way we have shown that {Hk, Hl} = 0.

5. Harmonic potential

In the following we want to find the most general form of the harmonic potential for which the
motion on the ellipsoid under the influence of this potential is still integrable. Moser (1980a)
says that ‘the motion on an ellipsoid under the influence of a potential |x|2 is also integrable
[and] this was shown already by Jacobi’. On the other hand Arnold et al (1993) make a stroger
statement: ‘Jacobi showed that the problem of free motion on an ellipsoid remains integrable
if the point is subjected to the action of an elastic force whose direction passes through the
centre of the ellipsoid’, which might be understood as suggesting that the spring constants on
different axes are different. We start with the most general form for the harmonic potential

U = 1

2

n+1∑
i=1

kix
2
i

with ki �= kj for i �= j and we look for conditions on ki for which the motion is integrable.
We show that the most general form for U depends on the semiaxes of the ellipsoid and two
arbitrary parameters which can be taken as k1 and k2. By substitution of the relation (3) in the
above formula we get

U = 1

2

n+1∑
i=1

kix
2
i =

n∑
k=0

(
n+1∑
i=1

kiai

P ′(bi)
bk

i

)
Sn−k
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where Sk are up to a ‘±’ sign the symmetric functions of u1, . . . , un. This means that U
is a polynomial of degree n in the elliptic coordinates defined by equations (3), (4). The
motion described by the Hamiltonian H = H + U is completely integrable iff the coefficients
of all the products ui, . . . , ul vanish such that U in the new variables should have the form
U = A + B(u1 + · · · + un). The vanishing of these coefficients leads to the relations

ki = a1a2(k1 − k2) − ai(a1k1 − a2k2)

ai(a2 − a1)
i = 3, 4, . . . , n + 1

which shows that the spring constants do not depend on the previous introduced parameters α

and β as should be the case. As in the preceding case we define two new parameters

γ = a1a2(k1 − k2)

a2 − a1
and δ = a2k2 − a1k1

a2 − a1
γ, δ ∈ R

such that ki has the dependence

ki(ai) = γ + δai

ai

i = 1, . . . , n + 1

that can be viewed as the action of a special element of GL+
2(R) which transforms the right

half-space into itself. For γ = 0 one recovers the classical result. Thus we obtained that
there is a two-dimensional family of coefficients ki , which depend also on the semiaxes of the
ellipsoid, for which the motion is integrable. Making all the calculation one finds

U = 1

2

(
n
αδ

β
+ γ + δ(a1 + a2) +

n+1∑
k=3

ak − δ

β

n∑
i=1

ui

)

which is the most general form of the harmonic potential for which the motion is completely
integrable. If δ = 0 or a1k1 = a2k2 the harmonic potential in elliptic coordinates reduces to a
constant, i.e. the motion is the free geodesic motion, a fact which is noted for the first time.

6. Separation of variables

The Hamiltonian of the problem is H = H +U and we do not yet know how the other prime
integrals look. We shall neglect the constant terms appearing in U such that

H = −2β

n∑
i=1

P(ui)

(ui − α)Q′(ui)
p2

i − δ

2β

n∑
i=1

ui. (12)

The Hamiltonians Hk (see relations (10)) depend on the symmetric functions S
(j)

k . A similar
sum also appears in the potential, namely S1 = −∑n

i=1 ui , where Sk are similarly defined as
in equation (9) by the relation

Q(x) =
n∏

i=1

(x − ui) =
n∑

k=0

xkSn−k. (13)

It is easily seen that dSk/duj = −S
(j)

k−1. For the other prime integrals we define the potentials
Uk = δ

2β
Sk for k = 2, . . . , n such that the integrals in involution are given by

Hk = Hk + Uk = −2β

n∑
i=1

S
(i)
k−1P(ui)

(ui − α)Q′(ui)
p2

i +
δ

2β
Sk k = 1, . . . , n. (14)



10166 P Diţă

The involution property follows straightforwardly

{Hi ,Hj } = {Hi,Hj } + {Hi,Uj } + {Ui , Hj } + {Ui ,Uj }
=

n∑
i=1

(
∂Ui

∂ul

∂Hj

∂pl

− ∂Hi

∂pl

∂Uj

∂ul

)

= −2δ

n∑
l=1

P(ul)pl

(ul − α)Q′(ul)

(
S

(l)
i−1S

(l)
j−1 − S

(l)
j−1S

(l)
i−1

) = 0.

The next important point is the separation of variables.
Let M2n � T ∗(Rn) be the canonically symplectic phase space of the dynamical system

defined by the Hamilton functions (14). We define the momentum map by

ε : M2n → Rn : Mh = {(ui, pi) : Hi = −hi, i = 1, . . . n} hi ∈ R. (15)

This application is such that ε−1(Mh) realizes the separation of variables giving an explicit
factorization of Liouville’s tori into one-dimensional ovals. Our goal is to construct explicitly
the application ε−1(Mh) and to do that we write system (14) in matrix form. With the notation
f (u, p) = P(u)p2/(u − α) (14) is written as

2β




S
(1)
0

/
Q′(u1) S

(2)
0

/
Q′(u2) · · · S

(n)
0

/
Q′(un)

S
(1)
1

/
Q′(u1) S

(2)
1

/
Q′(u2) · · · S

(n)
1

/
Q′(un)

· · · · · · · · · · · ·
S

(1)
n−1

/
Q′(u1) S

(2)
n−1

/
Q′(u2) · · · S

(n)
n−1

/
Q′(un)







f (u1, p1)

f (u2, p2)

· · ·
f (un, pn)


 − δ

2β




S1

S2

· · ·
hn




=




h1

h2

· · ·
hn


 .

Multiplying to the left by the matrix

V =




un−1
1 un−2

1 · · · 1
un−1

2 un−2
2 · · · 1

· · · · · · · · · · · ·
un−1

n un−2
n · · · 1


 (16)

we get a diagonal matrix with its non-zero elements equal to unity that multiplies the vector
column (f (u1, p1), f (u2, p2), . . . , f (un, pn))

t, where t means transpose. For a proof, see
relation (A.2) given in the appendix. The solution is

f (ui, pi) = − δ

4β2
un

i +
1

2β

n∑
k=1

hku
n−k
i i = 1, . . . , n (17)

where the first term on the right-hand side is a result of the property Q(ui) = 0 (see
equation (13)) written in the form un

i = − ∑n−1
k=0 uk

i Sn−k . The above relations have the
classical form (Sklyanin 1995)

ϕ(xi, pi, h1, . . . , hn) = 0 i = 1, . . . , n

which for hi = ci, i = 1, . . . , n give an explicit parametrization of Liouville’s tori.
Taking into account the form of f (ui, pi) and defining R(ui) = (ui − α)

(− δ
4β2 u

n
i +

1
2β

∑n
k=1 hku

n−k
i

)
we get

pi = εi

√
R(ui)

P (ui)
i = 1, . . . , n
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where εi = ±1. By the substitution pi → ∂S/∂ti the Hamilton–Jacobi equation separates
and the solution has the form

S(h, u1, . . . , un) =
n∑

i=1

εi

∫ ui

u0
i

√
R(w)

P (w)
dw.

On the last expression one can see that all the subtleties of the problem are encoded by the
hyperelliptic curve y2 = P(x)R(x) whose genus equals n.

The motion described by the prime integrals (11) is also separable and

g(ui, pi) =
n−1∑
k=0

hn−ku
k
i i = 1, . . . , n.

To obtain the geodesic equations g(u, p) has to be invertible with respect to p. With the
notation R(u) = ∑n−1

k=0 hn−ku
k
i the momentum is given by

pi = g−1(R(ui))

where g−1 denotes the inverse of g with respect to p and the solution of the Hamilton–Jacobi
equation now has the form

S(h, u1, . . . , un) =
n∑

i=1

εi

∫ ui

u0
i

g−1(R(w)) dw.

The above formulae allow us to choose new canonical variables (Arnold 1978), and in the
last case we may take Qk = Hk, k = 1, . . . , n and the canonically conjugated variables
Pi , i = 1, . . . , n. The Hamilton equations are

Q̇i = 0 i = 1, . . . , n Ṗ1 = −1 Ṗi = 0 i = 2, . . . , n

and therefore Qi = hi, i = 1, . . . , n and P1 = −t + g1,Pk = gk, k = 2, . . . , n with
gi, hi ∈ R, i = 1, . . . , n. Because

Pi = − ∂S

∂Qi

= − ∂S

∂hi

= −
n∑

i=1

∫ ui

u0
i

(g−1)′(R(w))wn−i dw

where (g−1)′(z) = dg−1(z)/dz one obtains the system of equations

−tδ1,j + bj =
n∑

i=1

∫ ui

u0
j

(g−1)′(R(t))tn−j dt j = 1, . . . , n

which represents the implicit form of the geodesics, and shows that the canonical equations
are integrable by quadratures. In the above formulae we singled out the first prime integral
H1; if we start with Hk as the Hamiltonian then the change in the above formulae is δ1j → δkj .

7. Quantization

To begin, we consider the Hamiltonian H1 given by equation (14). It is well known that
because of the ambiguities concerning the ordering of u and p we must use the Laplace–
Beltrami operator (Podolsky 1928). Its general form is � = 1√

g
(
√

ggijpj ), i, j = 1, . . . , n,

where g = det(gij ) and gij is the metric tensor. In our case gij = − 1
4β

(ui−α)Q′(ui )

P (ui )
δij and

gii = P(ui)/(ui − α)Q′(ui). Let Vn denote the determinant of matrix V t, where V t means
the transpose of V (see equation (16)) and V

(j)

n−1 the determinant of the matrix obtained by
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removing from V t the last row and the jth column. Using relations (A.3) and (A.4) from the
appendix we find that up to an inessential numerical factor

g = V 2
n

n∏
i=1

ui − α

P (ui)

and using that, the Schrödinger equation generated by H1 is written, after some simplification,
in the form

2β

n∑
i=1

1

Vn

√
P(ui)

ui − α

∂

∂ui

(
(−1)n−iV

(i)
n−1

√
P(ui)

ui − α

∂�

∂ui

)
−

(
δ

2β

n∑
i=1

ui

)
� = E1�.

Since the factor V
(i)
n−1 does not depend on ui it can be pulled out of the bracket and the preceding

equation takes the form

n∑
i=1

(−1)n−iV
(i)
n−1

√
P(ui)

ui − α

∂

∂ui

(√
P(ui)

ui − α

∂�

∂ui

)
−

(
δ

4β2
Vn

n∑
i=1

ui

)
� = E1

2β
Vn�.

Now we use the Jacobi identities (A.5) and find
n∑

i=1

(−1)n−iV
(i)
n−1

[√
P(ui)

ui − α

∂

∂ui

(√
P(ui)

ui − α

∂�

∂ui

)
+

(
− δ

4β2
un

i +
n−1∑
k=0

cn−ku
k
i

)
�

]
= 0

which is equivalent to n equations of the form√
P(ui)

ui − α

∂

∂ui

(√
P(ui)

ui − α

∂�i

∂ui

)
+

(
− δ

4β2
un

i +
n−1∑
k=0

cn−ku
k
i

)
�i = 0 i = 1, . . . , n. (18)

Here c1 = −E1/2β and the other ck are arbitrary.
The direct approach, starting with equation (17), is simpler, the problem being one-

dimensional, and one gets the same equation (18). It has the advantage that the arbitrary
coefficients ck are identified with ck = −hk/2β, i.e. ck are the eigenvalues of the Hamiltonians
Hk .

In this way the solving of the Schrödinger equation was reduced to the solving of a
Sturm–Liouville equation whose general form is

− d

dx

(
p(x)

df (x)

dx

)
+ v(x)f (x) = λr(x)f (x)

and the above equation has to be resolved on an interval [a, b]. It is well known that its
eigenfunctions will live in a Hilbert space iff p(x)r(x) > 0 on [a, b]. If p(x) has a continuous
first derivative and p(x)r(x) a continuous second derivative then by making the following
coordinate and function transforms:

ϕ =
∫ u

(
r(x)

p(x)

)1/2

dx 
 = (r(u)p(u))1/4f (u) (19)

one brings the preceding equation to the standard form

−d2


dϕ2
+ q(ϕ)
 = λ


where

q(ϕ) = µ′′(ϕ)

µ(ϕ)
− v(u)

r(u)
µ(ϕ) = (p(u)r(u))1/4

and u = u(ϕ) is the solution of the inverse Abel problem (19).



Motion on the n-dimensional ellipsoid under the influence of a harmonic force revisited 10169

In our case, equation (18), the transformation is

ϕ =
∫ u

u0

(
R(u)

P (u)

)1/2

du

and the Schrödinger equation gets

−d2


dϕ2
+

µ′′(ϕ)

µ(ϕ)

 = h1
 (20)

where µ(ϕ) = (R(u(ϕ))1/4 and in R(u) we made the rescaling hk → hk/h1, k = 1, . . . , n,
i.e. the solving of (18) is equivalent to solving equation (20) which represents the motion of a
one-dimensional particle in the potential generated by R(u(ϕ)).

For n = 1 and δ = 0 relation (20) is nothing else than the equation for the one-dimensional
rotator

d2�

dϕ2
+ l2� = 0

with the solution �(ϕ) = 1√
2π

eilϕ, l ∈ Z, etc. In all the other cases we have to make use
of the theory of hyperelliptic curves and/or θ -functions in order to obtain explicit solutions.
This problem will be treated elsewhere.

8. Conclusion

In this paper we have obtained the most general form of the harmonic potential for which the
motion of a point on the n-dimensional ellipsoid is completely integrable and we found another
form of the integrals in involution. The advantage of our approach is that separation of variables
is very easy being an immediate consequence of the Stäckel structure appearing in equations
of motion. We have shown that the Vandermonde structure is powerful enough to allow
construction of new n-dimensional completely integrable models. Two such models could be
given by the one-dimensional Hamiltonians, g(u, p) = (sin u/u)p2 and g(u, p) = tgu eαp

(see (11)). These models are interesting since in the first example g(u, p) is a function, which
has a denumerable number of zeros and the second one has a denumerable number of zeros
and poles, in both cases the hyperelliptic curve being of infinite genus. Thus these models
show that the dimension n of the system has no direct connection with the number of zeros
and/or poles of the function g(u, p).

Other examples of n-dimensional Hamiltonians are obtained for example from the many-
body elliptic Calogero–Moser (CM) model (Braden et al 1999) or the elliptic Ruijenaars
model (Ruijenaars 1987), starting with the one-dimensional Hamiltonians HCM(u, p) =
p2/2 + ν2Pτ (u) and HR(u, p) = cosh(αp)

√
1 − 2(αν)2Pτ (u), respectively, where Pτ (u)

is the Weierstrass function, and using the above machinery.
In conclusion we discovered a new method for obtaining n-dimensional completely

integrable systems starting with one-dimensional Hamiltonians. Also interesting is the
existence of a class of orthogonal metrics à la Jacobi for which the Lagrangian is gauge
invariant. This result gives rise to the problem of description of all the metrics that lead to the
same physics. A step in this direction could be the revivification of the techniques discovered
by Stäckel, Levi-Civita, Painlevé and many others which fell into undeserved oblivion.
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Appendix

In the following we collect a few known properties of the Vandermonde determinant, the
novelty being their presentation in the context of algebraic duality. Let ai, i = 1, . . . , n be n
real (complex) numbers. We define the polynomial

P(x) =
n∏

i=1

(x − ai) =
n∑

k=0

Skx
n−k (A.1)

where Sk = (−1)kσk(a1, . . . , an) and σk denote the elementary symmetric polynomials of
degree k. From (A.1) we have

P(ai) = 0 i = 1, . . . , n

i.e. the vectors X1 = (S0, S1, . . . , Sn) and Xi
2 = (an, . . . , a, 1), i = 1, . . . , n are orthogonal(

X1, X
i
2

) = 0 under the usual Euclidean scalar product. In order to see a few interesting
duality relations we define the polynomials

Pj (x) = P(x)

x − aj

=
n−1∑
k=0

S
(j)

k xn−k−1 j = 1, . . . , n.

From the property Pj (ai) = P ′(ai)δij we deduce that the vectors Uj = (
S

(j)

0 , . . . , S
(j)

n−1

)
and

Vi = (
an−1

i , . . . , 1
)

are bi-orthogonal, i.e.

(Vj , Ui) = P ′(ai)δij i, j = 1, . . . , n (A.2)

showing that Vj and Ui are dual to each other. The above relation tells us that the product of
the matrices U = (Ui)

n
1 and V = (

V t
j

)n

1 where t means transpose is a diagonal matrix.
It is easily seen that the Vandermonde determinant has two dual equivalent definitions

Vn(a1, . . . , an) =

∣∣∣∣∣∣∣∣
1 1 · · · 1
a1 a2 · · · an

· · · · · · · · · · · ·
an−1

1 an−1
2 · · · an−1

n

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

1 1 · · · 1

S
(1)
1 S

(2)
1 · · · S

(n)
1

· · · · · · · · · · · ·
S

(1)
n−1 S

(2)
n−1 · · · S

(n)
n−1

∣∣∣∣∣∣∣∣∣
(A.3)

where | · | means the determinant of the array. Let V
(j)

n−1 be the Vandermonde determinant
obtained by removing the jth column and the last row of the first array entering (A.3). Then
the following relations hold:

V
(j)

n−1 =
∏

1�k<l�n
k �=j �=l

(al − ak)

(A.4)
n∏

j=1

V
(j)

n−1 = (Vn)
n−2

Vn

V
(j)

n−1

= (−1)n−jP ′(aj ) j = 1, . . . , n. (A.5)

We give now the most general form of direct and dual Jacobi identities. By replacing the
last row of the first form of Vn by the row

(
ak

1, . . . , a
k
n

)
and expanding over this row we find

the identities (Babelon and Talon 1992)

n∑
i=1

(−1)n−1ak
i V

(i)
n−1 =




0 k = 0, 1, . . . , n − 2
Vn k = n − 1
Vn

∑n
i=1 ai k = n.

(A.6)
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By replacing the last row of the dual form of Vn by S
(1)
k , . . . , S

(n)
k we find the dual Jacobi

identity

n∑
i=1

(−1)n−1S
(i)
k V

(i)
n−1 =

{
0 k = 0, . . . , n − 2
Vn k = n − 1.

(A.7)

The above formulae are a consequence of a more general result. Let Aij be the minor of the
(i, j) element of the determinant Vn, i.e.

Aij =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1 1 · · · 1

a1 · · · aj−1 aj+1 · · · an

· · · · · · · · · ·
ai−1

1 · · · ai−1
j−1 ai−1

j+1 · · · ai−1
n

ai+1
1 · · · ai+1

j−1 ai+1
j+1 · · · ai+1

n

· · · · · · · · · ·
an−1

1 · · · an−1
j−1 an−1

j+1 · · · an−1
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

From relation (A.2) we get

an−1
i = −

n−1∑
k=1

S
(j)

k an−k−1
i i = 1, . . . , n

and substitute it in the last row of Aij . Afterwards we multiply the first row by S
(j)

n−1, the

second by S
(j)

n−2, the ith by S
(j)

n−i , etc, and add them to the last row and we get

Aij =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1 1 · · · 1

a1 · · · aj−1 aj+1 · · · an

· · · · · · · · · ·
ai−1

1 · · · ai−1
j−1 ai−1

j+1 · · · ai−1
n

ai+1
1 · · · ai+1

j−1 ai+1
j+1 · · · Ai+1

n

· · · · · · · · · ·
−S

(j)

n−i−1a
i
1 · · · −S

(j)

n−i−1a
i
j−1 −S

(j)

n−i−1a
i
j+1 · · · −S

(j)

n−i−1a
i
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)n−i−1S

(j)

n−i−1V
(j)

n−1(a1, . . . , aj−1, aj+1, . . . , an).

To obtain a dual result we denote by Bij the corresponding minor obtained from the dual
form of Vn. As in the preceding case we use the relation

S
(l)
n−1 = −

n−2∑
k=0

S
(l)
k an−k−1

j j = 1, . . . , n
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and substitute it in the last row of Bij . Multiplying the first row by an−1
j , the second by an−2

j ,
etc, and adding to the last row we find

Bij =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1 1 · · · 1

S
(1)
1 · · · S

(j−1)

1 S
(j+1)

1 · · · S
(n)
1

· · · · · · · · · ·
S

(1)
i−1 · · · S

(j−1)

i−1 S
(j+1)

i−1 · · · S
(n)
i−1

S
(1)
i+1 · · · S

(j−1)

i+1 S
(j+1)

i+1 · · · S
(n)
i+1

· · · · · · · · · ·
−an−i−1

j S
(1)
i · · · −an−i−1

j S
(j−1)

i −an−i−1
j S

(j+1)

i · · · −an−i−1
j S

(n)
i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−aj )

n−i−1V
(j)

n−1(a1, . . . , aj−1, aj+1, . . . , an).

References

Arnold V I 1978 Mathematical Methods of Classical Mechanics (New York: Springer)
Arnold V I, Kozlov V V and Neishhtadt A I 1993 Dynamical Systems: III. Encyclopaedia of Mathematical Sciences

vol 3 ed V I Arnold (Berlin: Springer) chapter 4, p 128
Babelon O and Talon M 1992 Nucl. Phys. B 379 321
Braden H W, Marshakov A, Mironov A and Morozov A 1999 Preprint hep-th/9906240
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Podolsky B 1928 Phys. Rev. 32 812
Ruijsenaars S N M 1987 Commun. Math. Phys. 110 191
Sklyanin E K 1995 Prog. Theor. Phys. Suppl. 118 35
Uhlenbeck K 1982 Lectures Notes in Mathematics vol 949 (New York: Springer) p 146


